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2006 34.6 39.3 52.4 40.7 48.5 62.7 66.8 63.5 70.3 49.9 31.8 33.3

2007 21.3 22.6 39.5 43.9 36.7 69.7 54.2 71.8 64.4 54.7 26.7 29.1

2008 35.6 32.2 41.4 42.2 54.3 70.5 63.9 72.6 73.6 42.3 37.5 25.3

2009 35.9 35.2 43.6 41.0 35.8 71.8 52.0 74.7 70.6 53.0 29.9 22.5

2010 37.4 29.1 48.9 40.9 36.1 64.0 50.4 73.4 71.1 50.4 34.8 33.8

Deliveries of beer by a beer distributor over five years, the sixty months 

from January 2006 to December 2010

The data is measured as the number of cases distributed (000’s omitted)

The Beer Deliveries Example
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Run chart of sales
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Average of next three months
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Month Sales

Moving 

Average

January-06 34.6

February-06 39.3

March-06 52.4 42.1

April-06 40.7 44.1

May-06 48.5 47.2

June-06 62.7 50.7

July-06 66.8 59.3

Three months moving average
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Month Sales

Moving 

Median

January-06 34.6

February-06 39.3

March-06 52.4 39.3

April-06 40.7 40.7

May-06 48.5 48.5

June-06 62.7 48.5

July-06 66.8 62.7

August-06 63.5 63.5

Three months moving median
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Generally, for data that is highly variable, a higher a is chosen

In practice, however, a seldom exceeds 0.5

For data which has more stability, a lower value of a is chosen

Typical a values range for 0.2 to 0.3

Exponential smoothing
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State space 
model
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ttttt ISCTy =

Tt = trend factor St = seasonal factor

Ct = cyclic factor It = random factor

The Multiplicative Model
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Example:

1. The long-term trend for a specific product is +1.02

2. The cyclic factor at time t is 1.03

3. The seasonal factor at time t is 0.96

4. We cannot state the random factor

The Multiplicative Model
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• This predicts a slight increase (~ 1%) for period t

• If the actual increase was 1.0125, then It = 1.0125 / 1.0086 

= 1.0039 

The Multiplicative Model
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We can also take away the effect of the long-term data

This is termed a detrended series

Recall that yt = 1.0125 and that the trend factor was Tt = 1.02
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• Thus, without the long-term trend, we would have shipped 

less units this period

The Multiplicative Model

17



ttttt ISCTy +++=

Tt = trend factor St = seasonal factor

Ct = cyclic factor It = random factor

The Additive Model
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Say, we know that overtime, we ship 50 additional units per period, 

and in this business cycle we are shipping an additional 200 units

However, during this period, we typically ship 175 fewer units:

ො𝑦𝑡 = 𝑇𝑡 + 𝐶𝑡 + 𝑆𝑡

= 50 + 200 − 175 = 75

The Additive Model
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Thus, we could forecast shipping an additional 75 units this period

If we actually shipped 91 additional units

Then, It = (91 - 75) = 16

The Additive Model
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2006 34.6 39.3 52.4 40.7 48.5 62.7 66.8 63.5 70.3 49.9 31.8 33.3

2007 21.3 22.6 39.5 43.9 36.7 69.7 54.2 71.8 64.4 54.7 26.7 29.1

2008 35.6 32.2 41.4 42.2 54.3 70.5 63.9 72.6 73.6 42.3 37.5 25.3

2009 35.9 35.2 43.6 41.0 35.8 71.8 52.0 74.7 70.6 53.0 29.9 22.5

2010 37.4 29.1 48.9 40.9 36.1 64.0 50.4 73.4 71.1 50.4 34.8 33.8

Mean: 33.0 31.7 45.1 41.8 42.3 67.7 57.5 71.2 70.0 50.1 32.1 28.8

Overall Mean: 47.6

Analysis of seasonal effects
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For January, the average is 33.0 versus an overall mean 

of 47.6.  The seasonal adjustment is thus:

442.1
0.33

6.47
===

Jan

Jan
X

X
S

• As a result, we will multiple actual January sales 

by 1.442 to adjust for the fact that January is a 

low sales month

Analysis of seasonal effects
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July, however, is a usually high sales month

As a result, its seasonal adjustment will bring its value down:

828.0
5.57

6.47
===

Jul

Jul
X

X
S

• As a result, to “seasonally adjust”, we multiple each 

July value by 0.828

Analysis of seasonal effects
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In the table below, the seasonal adjustment factors are applied to all 

the original values 

They are “deseasonalized”:
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2006 50.0 59.0 55.2 46.4 54.6 44.1 55.3 42.5 47.8 47.4 47.1 55.1

2007 30.8 34.0 41.6 50.0 41.4 49.0 44.9 48.0 43.8 52.0 39.5 48.1

2008 51.3 48.4 43.7 48.1 61.1 49.5 52.9 48.5 50.0 40.2 55.5 41.8

2009 51.9 52.9 45.9 46.7 40.3 50.4 43.1 49.9 48.0 50.4 44.3 37.2

2010 54.0 43.7 51.5 46.7 40.6 45.0 41.8 49.1 48.4 47.9 51.5 55.8

Analysis of seasonal effects
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B e e r  S a le s ,  S e a s o n a l ly  A d ju s te d
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The Components of a Time Series
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dow1941 = mistat.load_data('DOW1941')
t = np.arange(1, len(dow1941) + 1)
x = (t - 151) / 302
omega = 4 * np.pi * t / 302
ft = (123.34 + 27.73 * x - 15.83* x ** 2 - 237.00 * x**3

+ 0.1512 * np.cos(omega) + 1.738 * np.sin(omega)
+ 1.770 * np.cos(2 * omega) - 0.208 * np.sin(2 * omega)
- 0.729 * np.cos(3 * omega) + 0.748 * np.sin(3 * omega))

fig, ax = plt.subplots(figsize=[4, 4])
ax.scatter(dow1941.index, dow1941, facecolors='none', edgecolors='grey')
ax.plot(t, ft, color='black')
ax.set_xlabel('Working day')
ax.set_ylabel('DOW1941')
plt.show()
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Autocorrelations
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Autocorrelations and Partial Autocorrelations
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Autocorrelations and Partial Autocorrelations
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1. Auto Regressive (AR)

2. Moving Average (MA)

3. Auto Regressive Integrated Moving Average (ARIMA)

ARIMA Models
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yt =  d + q1yt-1+ et, t = 1, 2,...,T.      

d is the intercept.

q1 is parameter generally between -1 and +1.

et is an uncorrelated random error with
mean zero and variance se

2 .

First-Order Autoregressive Processes, AR(1):
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yt =  d + q1yt-1 + q2yt-2 +...+ qpyt-p + et

d is the intercept.

qi’s  are parameters generally between -1 and +1.

et is an uncorrelated random error with
mean zero and variance se

2 .

Autoregressive Process of order p,  AR(p) :
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yt =  0.5051 + 1.5537 yt-1 - 0.6515 yt-2

(0.1267)     (0.0707)           (0.0708)

positive

negative

AR(2) model of U.S. unemployment rates
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unemployment rate:    yT-1 = 6.63   and   yT = 6.20

yT+1 =  d + q1 yT + q2 yT-1   =    0.5051 + (1.5537)(6.2) - (0.6515)(6.63)

=    5.8186

yT+2 =  d + q1 yT+1 + q2 yT =    0.5051 + (1.5537)(5.8186) - (0.6515)(6.2)

=    5.5062

Using  AR Model  for Forecasting:
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The Partial Autocorrelation Function (PAF)

The PAF is the sequence of correlations between
(yt and yt-1),  (yt and yt-2),  (yt and yt-3),  and so on,
given that the effects of earlier lags on yt are 
held constant.

Choosing the lag length, p, for AR(p):
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yt =  0.5 yt-1 + 0.3 yt-2  +  et

0

2 / T

− 2 / T

1

−1

k

qkk is the last (kth) coefficient
in a kth order AR process.

This sample PAF suggests a second 
order process AR(2) which is correct. 

Data simulated
from this model:

qkk

^

Partial Autocorrelation Function
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yt =  m + et + a1et-1 + a2et-2 +...+ aqet-q

m is the intercept.

ai‘s are unknown parameters.

et is an uncorrelated random error with
mean zero and variance se

2 .

Moving Average Process of order q,  MA(q):
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yt =  m + et + a1et-1

Minimize sum of least squares deviations:

S(m,a1)  =  S et =  S(yt - m - a1et-1)2

t=1

T

t=1

T
2

An MA(1) process:
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The Autocorrelation Function (ACF)

The ACF is the sequence of correlations between (yt and yt-1),  
(yt and yt-2),  (yt and yt-3),  and so on, without holding the 
effects of earlier lags on yt constant.

The PAF controlled for the effects of previous lags but the ACF does not 
control for such effects.

Choosing the lag length, q, for MA(q):
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yt =  et − 0.9 et-1

0

2 / T

− 2 / T

1

−1

k

rkk

rkk is the last (kth) coefficient
in a kth order MA process.

This sample AF suggests a first order 
process MA(1) which is correct. 

Data simulated
from this model:

Autocorrelation Function
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An ARMA(1,2) has one autoregressive lag
and two moving average lags:

yt =  d  + q1yt-1 + et  + a1et-1  + a2 et-2

Autoregressive Moving Average
ARMA(p,q)
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• Akaike's Information Criterion [AIC]

• Schwartz's Bayesian Criterion [BIC]

• -2LogLikelihood 

The smaller the better….

Goodness of fit criteria
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Stationary:

A stationary time series is one whose mean, variance,
and autocorrelation function do not change over time.

Nonstationary:

A nonstationary time series is one whose mean,
variance or autocorrelation function change over time.

Stationary vs. Nonstationary 
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yt =  zt - zt-1

First Differencing is often used to transform
a nonstationary series into a stationary series:

where zt  is the original nonstationary series

and  yt is the new stationary series.
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An ARIMA(p,d,q) model represents an AR(p) - MA(q) 
process that has been differenced (integrated, I(d)) d times

yt = d + q1yt-1 +...+ qpyt-p + et + a1et-1 +... + aq et-q

Auto Regressive Integrated Moving Average, 
ARIMA(p,d,q)
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The Box-Jenkins approach:

1.   Identification
determining the values of  p, d, and q

2.   Estimation
linear or nonlinear least squares

3.   Diagnostic Checking
model fits well with no autocorrelation?

4.   Forecasting
short-term forecasts of future yt values

54



A Case Study: Series F  

The series consists of  70 observations on  
the yield of a batch chemical process. 
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First we plot the series to check for trend, periodicity, 
etc. which will need the application of differencing.

We inspect the ACF and PAFto help in identifying an 
ARMA model for the stationary series we obtain.

56

The Autocorrelation Function (ACF)

The Partial Autocorrelation Function (PAF)

A Case Study: Series F  



Time Plot of Series F

No obvious non-stationarity in 
the form of trend or periodic 
effects.

No apparent need to difference 
the series.
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Time Series Plot for F
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Model Identification.

• The theoretical acf of a MA(q) series shows a cutoff 
after lag q.

• The ACF of an AR(p) series theoretically shows a 
geometric decline after lag p.

• The pacf of an AR(p) series theoretically shows a 
cutoff at lag p.
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More Identification.

•Often several models look plausible .

•We can try to identify the order of an AR process by 
fitting several models of orders in the region of p 
which we think is plausible.  Plotting the residual sum 
of squares against p may show a “flattening”  for 
values beyond the “true” order.
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Sample ACF of Series F

Let’s look at a correlogram of the 
series.

The only large values are at lags 1 
and 2.

Maybe AR(2) or AR(1)?
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Partial Correlogram

The partial correlogram also 
only has appreciable values at 
lags 1 and 2.

Try an AR(2)  model.

i.e. p=2, d=0, q=0
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Fitting an AR(2) model

Final Estimates of Parameters

Type          Coef StDev T

AR   1    -0.3461      0.1259     -2.75

AR   2      0.1934      0.1259      1.54

Constant    59.047       1.298     45.50

Mean        51.227       1.126
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Model Checking

• Examine various aspects of the residuals to evaluate the 
adequacy of our chosen model.

• Use the acf and pacf to look for any remaining times series 
structure in the residuals which we have not removed.

• Check for normality and constant variance.
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Correlogram of Residuals

161412108642
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(with 95% c onfide nce lim its for the au tocorrela tions)

No obvious autocorrelation 
left after we have fitted our 
AR(2) model to the original 
series.



Partial Correlogram of Residuals
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As we expect from the PAF
and ACF, there is no 
indication of residual partial 
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Histogram of Residuals
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Histogram of the Residuals

(respon se is F)

The residuals are symmetric 
about zero and die away 
fairly rapidly. A normal 
distribution with mean zero 
looks plausible.



Normal Probability Plot
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Normal Probability Plot of the Residuals

(respon se is F)

The graph should approximate a 
straight line if the residuals are 
normally distributed.

A normal distribution looks OK.



Residuals v. Fitted Values
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Residuals Versus the Fitted Values

(response  is F)

No obvious problems such 
as the variance depending 
on the size of the 
observation.



Residuals in Time Order
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(respon se is F)

No obvious failures to 
model dependence of 
residuals over time .



Mean

Std

N

51.128571

 11.82361

       70

MA(2)  No Constrain

AR(1)  No Constrain

AR(2)  No Constrain

ARMA(1, 1)  No Constrain

Model

   67

   68

   67

   67

DF

10.895539

120.03093

117.76326

 118.6094

Variance

173.18474

339.14246

339.80735

 340.3085

AIC

179.93023

343.63945

346.55283

347.05399

SBC

0.179

0.166

0.193

0.188

RSquare

332.05415

333.30647

331.00592

331.48621

-2LogLH

Model Comparison

Time Series Yield

Which Model ?
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Forecasting 6 periods ahead

706560555045403530252015105
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Time Series Plot for F

(with foreca sts and  their 9 5% confidence  lim its)

Opposite is a time series plot with 
forecasts up to 6 periods ahead added.

You can see that the interval estimates in 
blue are quite wide.
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Transfer Functions
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Transfer Functions
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Transfer Functions

75



Prewhitening
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https://otexts.com/fpp2/

https://otexts.com/fpp2/
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A Case Study

• A manufacturer of electro-mechanical devices

• 22% of units fail early

• The company screens units via burn-in under accelerated conditions

• 23 measurements are collected in real time (2 key parameters)

• Can we use these measurements to predict which units will fail in less 
time than the current protocol?



Key parameter 1

Data consists of 92 units. If a unit didn’t fail, there would be around 
25,000 measurements. Failed series can be much shorter
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Functional Data Analysis models

• B-Splines
• Piecewise polynomials with an underlying mean model and variance components on the spline 

coefficients.
• These often work the best.
• Try these first and customize the #Knots as needed.

• P-Splines
• P is for “Penalized”.  These tend to have lots of knots and are often slower to fit but similar in 

properties to B Splines. 
• Worth trying if B Spline do not fit well.

• Fourier Basis
• Uses a sine/cosine expansion as the basis.
• Good for periodic data (like vibration/sound signals).
• Usually the spline models work better on other types of functional data. 
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𝑦𝑖 𝑡𝑖,𝑗 =
𝑘
𝛽𝑘𝑏(𝑡𝑖,𝑗) +

𝑘
𝛾𝑖,𝑘𝑏(𝑡𝑖,𝑗) + 𝜀𝑖,𝑗,𝑘

• 𝑏(𝑡𝑖,𝑗): basis functions, these form 𝑋, and 𝑍.

• 𝛽𝑘: mean function coefficients, fixed effects

• 𝛾𝑖,𝑘 ~ 𝑁(0, 𝜎𝑘
2): random effects

• 𝜀𝑖,𝑗,𝑘~𝑁(0, 𝜎𝜀
2): errors

P-Spline Functional  Model Fit
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ො𝛾𝑉𝑎𝑙 = 𝑍𝑉𝑎𝑙
𝑇 𝑍𝑉𝑎𝑙 + 𝐺( ො𝜎𝑇𝑟

2 )
−1

𝑍𝑉𝑎𝑙
𝑇 (𝑦𝑉𝑎𝑙 − 𝑋𝑉𝑎𝑙 መ𝛽𝑇𝑟)

• መ𝛽𝑇𝑟 , ො𝜎𝑇𝑟
2 estimated from training data

• Use BLUP formula to score ො𝛾𝑉𝑎𝑙 or any new units

Scoring New P-Spline Functions
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A best linear unbiased prediction (BLUP) estimate of realized values of a random variable are linear 
in the sense that they are linear functions of the data. They are unbiased in the sense that the 
average value of the estimate is equal to the average value of the quantity being estimated and best 
in the sense that they have minimum sum of squared error within the class of linear unbiased 
estimators. Estimators of random effects are called predictors, to distinguish them from estimators
of fixed effects called estimators. BLUP estimates are solutions to mixed model equations and are 
usually different from generalized linear regression estimates used for fixed effects.

Training



• Data summarized into one row per unit
• Model failure probability



A two-layer Neural Network predicting failure probability

Fail-0
Good-1



A Regression Tree was used to predict “Censor” at 20 hours using the 
Neural probability as input, using only the Training subset of the data.

Prob(Fail)<0.53 Prob(Fail)>=0.53

Prob(Fail)<0.09 Prob(Fail)>=0.09

Model Validation
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Cut off



Yes/No/Maybe decision rule was developed from the neural network prediction

Fail

Training

Fail

Validation

Model Validation
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Dissolution 

Curves of 

12 tablets.

Test and 

Reference
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Test Reference

FDA NLR

https://www.youtube.com/watch?v=g4gxLG2IQeo

https://www.youtube.com/watch?v=g4gxLG2IQeo


Dissolution 

Curves of 

12 tablets.

Test and 

Reference
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Dissolution 

Curves of 

12 tablets.

Test 

T5R

Is different
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Dissolution 

Curves of 

12 tablets.

Test T5R

Is different
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Quadratic B-
spline with 1 

knot

FDA



FDA
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Dissolution 

Curves of 

12 tablets.

Test T5R

Is different



NLR
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NLR
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T5R

NLR
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T1R



NLR
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Model Dependent 

Approaches

multivariate statistical distance (MSD) 



Thank you for your attention
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