# A Biomed Data Analyst Training Program 

Time series

Professor Ron S. Kenett

## The Beer Deliveries Example

Deliveries of beer by a beer distributor over five years, the sixty months from January 2006 to December 2010
The data is measured as the number of cases distributed ( 000 's omitted)

|  | $\begin{aligned} & \text { 기 } \\ & \text { D } \\ & \text { 덱 } \end{aligned}$ |  | $\begin{aligned} & \text { ᄃ } \\ & \stackrel{0}{0} \\ & \sum_{2}^{n} \end{aligned}$ | $\overline{\bar{\circ}}$ | $\stackrel{\text { ® }}{\text { ® }}$ | $\stackrel{0}{\leftrightharpoons}$ | 亏 | $\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$ |  | $\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\circ}{0} \\ & \hline 0 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 06 | 34.6 | 39.3 | 52.4 | 40.7 | 48.5 | 62.7 | 66.8 | 63.5 | 70.3 | 49.9 | 31.8 | 33.3 |
| 2007 | 21.3 | 22.6 | 39.5 | 43.9 | 36.7 | 69.7 | 54.2 | 71.8 | 64.4 | 54.7 | 26.7 | 29.1 |
| 2008 | 35.6 | 32.2 | 41.4 | 42.2 | 54.3 | 70.5 | 63.9 | 72.6 | 73.6 | 42.3 | 37.5 | 25.3 |
| 2009 | 35.9 | 35.2 | 43.6 | 41.0 | 35.8 | 71.8 | 52.0 | 74.7 | 70.6 | 53.0 | 29.9 | 22 |
| 2010 | 37.4 | 29.1 | 48.9 | 40.9 | 36.1 | 64.0 | 50.4 | 73.4 | 71.1 | 50.4 | 34.8 | 33.8 |

Run chart of sales
Beer Shipments, 2006-2010


## Three months moving average

$$
\begin{aligned}
\bar{X}_{t} & =\frac{X_{t-1}+X_{t-2}+X_{t-3}}{3} \\
& =\frac{34.6+39.3+52.4}{3}=\frac{126.3}{3}=42.1
\end{aligned}
$$

## Three months moving average



## Three months moving average

| Month | Sales | Moving <br> Average |
| ---: | ---: | ---: |
| January-06 | 34.6 |  |
| February-06 | 39.3 |  |
| March-06 | 52.4 | 42.1 |
| April-06 | 40.7 | 44.1 |
| May-06 | 48.5 | 47.2 |
| June-06 | 62.7 | 50.7 |
| July-06 | 66.8 | 59.3 |

## Beer Sales: Actual vs 3-month Moving Average <br> $\rightarrow$ Sales <br> -—Moving Average



Months

## Three months moving median

| Month | Sales | Moving <br> Median |
| ---: | ---: | ---: |
| January-06 | 34.6 |  |
| February-06 | 39.3 |  |
| March-06 | 52.4 | 39.3 |
| April-06 | 40.7 | 40.7 |
| May-06 | 48.5 | 48.5 |
| June-06 | 62.7 | 48.5 |
| July-06 | 66.8 | 62.7 |
| August-06 | 63.5 | 63.5 |

## Beer Sales vs. Moving Median



## Exponential smoothing

$$
\hat{y}_{t+1}=a y_{t}+a(1-a) y_{t-1}+a(1-a)^{2} y_{t-2}+\ldots
$$

Generally, for data that is highly variable, a higher a is chosen In practice, however, a seldom exceeds 0.5
For data which has more stability, a lower value of a is chosen Typical a values range for 0.2 to 0.3


State space model
$r=((m+\infty)+m)$
$+\epsilon_{t}$ $\times\left(1+\epsilon_{t}\right)$

Independent Errors

Observed Series

Level State $l$

Trend State $b$
(Optional)

Seasonal State $s$ (Optional)

$$
\left.Y_{t}=\left(\begin{array}{lll} 
& & \\
l_{t-1} & + & b_{t-1} \\
& \times &
\end{array}\right) \begin{array}{ll}
+ & \\
\times & s_{t-m}
\end{array}\right) \begin{aligned}
& +\epsilon_{t} \\
& \times\left(1+\epsilon_{t}\right)
\end{aligned}
$$



## Seasonal $s$



## The Multiplicative Model

$$
y_{t}=T_{t} C_{t} S_{t} I_{t}
$$

$T_{t}=$ trend factor
$S_{t}=$ seasonal factor
$C_{t}=$ cyclic factor $\quad I_{t}=$ random factor

## The Multiplicative Model

## Example:

1. The long-term trend for a specific product is +1.02
2. The cyclic factor at time $t$ is 1.03
3. The seasonal factor at time $t$ is 0.96
4. We cannot state the random factor

## The Multiplicative Model

$$
\begin{aligned}
\hat{y}_{t} & =T_{t} C_{t} S_{t}=1.02 \cdot 1.03 \cdot 0.96 \\
& =1.0086
\end{aligned}
$$

- This predicts a slight increase ( $\sim 1 \%$ ) for period $t$
- If the actual increase was 1.0125 , then $t_{t}=1.0125 / 1.0086$ $=1.0039$


## The Multiplicative Model

We can also take away the effect of the long-term data This is termed a detrended series
Recall that $y_{t}=1.0125$ and that the trend factor was $T_{t}=1.02$

$$
\frac{y_{t}}{T_{t}}=\frac{T_{t} C_{t} S_{t} I_{t}}{T_{t}}=\frac{1.0125}{1.02}=0.9927
$$

- Thus, without the long-term trend, we would have shipped less units this period


## The Additive Model

$$
\begin{aligned}
& y_{t}=T_{t}+C_{t}+S_{t}+I_{t} \\
& T_{t}=\text { trend factor } \\
& S_{t}=\text { seasonal factor } \\
& C_{t}=\text { cyclic factor } \\
& I_{t}=\text { random factor }
\end{aligned}
$$

## The Additive Model

Say, we know that overtime, we ship 50 additional units per period, and in this business cycle we are shipping an additional 200 units

However, during this period, we typically ship 175 fewer units:

$$
\begin{aligned}
& \widehat{y}_{t}=T_{t}+C_{t}+S_{t} \\
& =50+200-175=75
\end{aligned}
$$

## The Additive Model

Thus, we could forecast shipping an additional 75 units this period If we actually shipped 91 additional units

Then, $I_{t}=(91-75)=16$

## Beer Shipments, 2006-2010



## Analysis of seasonal effects

|  |  |  |  | $\overline{\bar{c}}$ | $\sum_{\Sigma}^{\star}$ | $\stackrel{0}{\leftrightharpoons}$ | $\frac{\grave{\jmath}}{3}$ |  |  | $\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{\text { O}}{0} \\ & \text { O} \end{aligned}$ | $\begin{aligned} & \bar{\omega} \\ & \stackrel{\text { D}}{\bar{D}} \\ & \text { O} \\ & \text { Z } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 34.6 | 39.3 | 52.4 | 40.7 | 48.5 | 62.7 | 66.8 | 63.5 | 70.3 | 49.9 | 31.8 | 33.3 |
| 2007 | 21.3 | 22.6 | 39.5 | 43.9 | 36.7 | 69.7 | 54.2 | 71.8 | 64.4 | 54.7 | 26.7 | 29.1 |
| 2008 | 35.6 | 32.2 | 41.4 | 42.2 | 54.3 | 70.5 | 63.9 | 72.6 | 73.6 | 42.3 | 37.5 | 25.3 |
| 2009 | 35.9 | 35.2 | 43.6 | 41.0 | 35.8 | 71.8 | 52.0 | 74.7 | 70.6 | 53.0 | 29.9 | 22.5 |
| 2010 | 37.4 | 29.1 | 48.9 | 40.9 | 36.1 | 64.0 | 50.4 | 73.4 | 71.1 | 50.4 | 34.8 | 33.8 |
| Mean: | 33.0 | 31.7 | 45.1 | 41.8 | 42.3 | 67.7 | 57.5 | 71.2 | 70.0 | 50.1 | 32.1 | 28.8 |

Overall Mean: 47.6

## Analysis of seasonal effects

For January, the average is 33.0 versus an overall mean of 47.6. The seasonal adjustment is thus:

$$
S_{J a n}=\frac{\bar{X}}{\bar{X}_{J a n}}=\frac{47.6}{33.0}=1.442
$$

- As a result, we will multiple actual January sales by 1.442 to adjust for the fact that January is a low sales month


## Analysis of seasonal effects

July, however, is a usually high sales month
As a result, its seasonal adjustment will bring its value down:

$$
S_{J u l}=\frac{\bar{X}}{\bar{X}_{J u l}}=\frac{47.6}{57.5}=0.828
$$

- As a result, to "seasonally adjust", we multiple each July value by 0.828


## Analysis of seasonal effects

In the table below, the seasonal adjustment factors are applied to all the original values
They are "deseasonalized":

|  |  |  | $\begin{aligned} & \frac{\widetilde{N}}{\substack{2}} \\ & \sum_{0}^{01} \end{aligned}$ | $\overline{\bar{c}}$ | $\underset{\Sigma}{\grave{\infty}}$ | $\begin{aligned} & 0 \\ & \vdots \\ & \end{aligned}$ | $\frac{\lambda}{3}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{\rightharpoonup}{\mathbb{<}} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$ |  | $\begin{aligned} & \bar{\prime} \\ & \text { D} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2006 | 50.0 | 59.0 | 55.2 | 46.4 | 54.6 | 44.1 | 55.3 | 42.5 | 47.8 | 47.4 | 47.1 | 55.1 |
| 2007 | 30.8 | 34.0 | 41.6 | 50.0 | 41.4 | 49.0 | 44.9 | 48.0 | 43.8 | 52.0 | 39.5 | 48.1 |
| 2008 | 51.3 | 48.4 | 43.7 | 48.1 | 61.1 | 49.5 | 52.9 | 48.5 | 50.0 | 40.2 | 55.5 | 41.8 |
| 2009 | 51.9 | 52.9 | 45.9 | 46.7 | 40.3 | 50.4 | 43.1 | 49.9 | 48.0 | 50.4 | 44.3 | 37.2 |
| 2010 | 54.0 | 43.7 | 51.5 | 46.7 | 40.6 | 45.0 | 41.8 | 49.1 | 48.4 | 47.9 | 51.5 | 55.8 |

## Seasonality Adjusted Series

Beer Sales, Seasonally Adjusted


## Chapter 6 <br> Time Series Analysis and Prediction

Preview In this chapter, we present essential parts of time series analysis, with the objective of predicting or forecasting its future development. Predicting future behavior is generally more successful for stationary series, which do not change their stochastic characteristics as time proceeds. We develop and illustrate time series which are of both types, namely, covariance stationary and non-stationary.

## Chapter 6

Modern Statistics: A Computer Based Approach with Python
by Ron Kenett, Shelemyahu Zacks, Peter Gedeck
Publisher: Springer International Publishing; 1st edition (September 15, 2022)
ISBN-13: 978-3031075650
(c) 2022 Ron Kenett, Shelemyahu Zacks, Peter Gedeck

The code needs to be executed in sequence

## Time Series Analysis and Prediction

Ron Kenett, Shelemyahu Zacks, Peter Gedeck Pages 329-360

In [1]: import os
os.environ['OUTDATED_IGNORE'] = '1'
import warnings
from outdated import OutdatedPackageWarning
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=OutdatedPackageWarning)
Time Series Analysis and Prediction

In [2]: import datetime
import statsmodels.formula.api as smf
from statsmodels.tools.sm_exceptions import ValueWarning
import pandas as pd
import random
import numpy as np
import pingouin as pg
from scipy import stats
import matplotlib.pyplot as plt
import mistat

## The Components of a Time Series



$$
\begin{aligned}
(t)= & 123.34+27.73 \frac{t-151}{302}-15.83\left(\frac{t-151}{302}\right)^{2}-237.00\left(\frac{t-151}{302}\right)^{3} \\
& +0.1512 \cos \frac{4 \pi t}{302}+1.738 \sin \frac{4 \pi t}{302}+1.770 \cos \frac{8 \pi t}{302}-0.208 \sin \frac{8 \pi t}{302} \\
& -0.729 \cos \frac{12 \pi t}{302}+0.748 \sin \frac{12 \pi t}{302} .
\end{aligned}
$$

```
dow1941 = mistat.load_data('DOW1941')
t = np.arange(1, len(dow1941) + 1)
x = (t - 151) / 302
omega = 4 * np.pi * t / 302
ft = (123.34 + 27.73*x-15.83*x** 2-237.00* x**3
    +0.1512 * np.cos(omega) + 1.738 * np.sin(omega)
    +1.770 * np.cos(2 * omega) - 0.208 * np.sin(2 * omega)
    -0.729 * np.cos(3 * omega) + 0.748 * np.sin(3 * omega))
```

fig, ax = plt.subplots(figsize=[4, 4])
ax.scatter(dow1941.index, dow1941, facecolors='none', edgecolors='grey')
ax.plot(t, ft, color='black') ax.set_xlabel('Working day') ax.set_ylabel('DOW1941') plt.show()

$$
\begin{aligned}
f(t)= & 123.34+27.73 \frac{t-151}{302}-15.83\left(\frac{t-151}{302}\right)^{2}-237.00\left(\frac{t-151}{302}\right)^{3} \\
& +0.1512 \cos \frac{4 \pi t}{302}+1.738 \sin \frac{4 \pi t}{302}+1.770 \cos \frac{8 \pi t}{302}-0.208 \sin \frac{8 \pi t}{302} \\
& -0.729 \cos \frac{12 \pi t}{302}+0.748 \sin \frac{12 \pi t}{302} .
\end{aligned}
$$






## Autocorrelations



## Autocorrelations and Partial Autocorrelations



## Autocorrelations and Partial Autocorrelations



## ARIMA Models

1. Auto Regressive (AR)
2. Moving Average (MA)

3. Auto Regressive Integrated Moving Average (ARIMA)


## First-Order Autoregressive Processes, AR(1):

$$
\mathrm{y}_{\mathrm{t}}=\delta+\theta_{1} \mathrm{y}_{\mathrm{t}-1}+\mathrm{e}_{\mathrm{t},} \quad \mathrm{t}=1,2, \ldots, \ldots \mathrm{~T} .
$$

$\delta$ is the intercept.
$\theta_{1}$ is parameter generally between -1 and +1 .
$e_{t}$ is an uncorrelated random error with mean zero and variance $\sigma_{\mathrm{e}}{ }^{2}$.

Autoregressive Process of order p, $\operatorname{AR}(\mathrm{p})$ :

$$
\mathrm{y}_{\mathrm{t}}=\delta+\theta_{1} \mathrm{y}_{\mathrm{t}-1}+\theta_{2} \mathrm{y}_{\mathrm{t}-2}+\ldots+\theta_{\mathrm{p}} \mathrm{y}_{\mathrm{t}-\mathrm{p}}+\mathrm{e}_{\mathrm{t}}
$$

$\delta$ is the intercept.
$\theta_{i}^{\prime}$ 's are parameters generally between -1 and +1 .
$e_{t}$ is an uncorrelated random error with mean zero and variance $\sigma_{e}{ }^{2}$.

## AR(2) model of U.S. unemployment rates

##  <br> negative

## Using AR Model for Forecasting:

 unemployment rate: $\mathrm{y}_{\mathrm{T}-1}=6.63$ and $\mathrm{y}_{\mathrm{T}}=6.20$$$
\begin{aligned}
\mathrm{V}_{\mathrm{T}+1} & =\delta+\theta_{1} \mathrm{Y}_{\mathrm{T}}+\theta_{2} \mathrm{~V}_{\mathrm{T}-1}=0.5051+(1.5537)(6.2)-(0.6515)(6.63) \\
& =5.8186
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{y}_{\mathrm{T}+2} & =\delta+\theta_{1} \mathrm{y}_{\mathrm{T}+1}+\theta_{2} \mathrm{y}_{\mathrm{T}}=0.5051+(1.5537)(5.8186)-(0.6515)(6.2) \\
& =5.5062
\end{aligned}
$$

## Choosing the lag length, p , for $\mathrm{AR}(\mathrm{p})$ :

> The Partial Autocorrelation Function (PAF)

The PAF is the sequence of correlations between $\left(y_{t}\right.$ and $\left.y_{t-1}\right)$, $\left(y_{t}\right.$ and $\left.y_{t-2}\right)$, $\left(y_{t}\right.$ and $\left.y_{t-3}\right)$, and so on, given that the effects of earlier lags on $y_{t}$ are held constant.

## Partial Autocorrelation Function

Data simulated
from this model:

$$
y_{t}=0.5 y_{t-1}+0.3 y_{t-2}+e_{t}
$$

$\hat{\wedge}$
$\hat{\theta}_{\mathrm{kk}}$

## $\theta_{\mathrm{kk}}$ is the last ( $\mathrm{k}^{\text {th }}$ ) coefficient in a $\mathrm{k}^{\text {th }}$ order AR process.



This sample PAF suggests a second order process $\operatorname{AR}(2)$ which is correct.

## Moving Average Process of order q, MA(q):

$$
y_{t}=\mu+e_{t}+\alpha_{1} e_{t-1}+\alpha_{2} e_{t-2}+\ldots+\alpha_{q} e_{t-q}
$$

$\mu$ is the intercept.
$\alpha_{i}$ 's are unknown parameters.
$e_{t}$ is an uncorrelated random error with mean zero and variance $\sigma_{e}{ }^{2}$.

An MA(1) process:

$$
y_{t}=\mu+e_{t}+\alpha_{1} e_{t-1}
$$

Minimize sum of least squares deviations:

$$
S\left(\mu, \alpha_{1}\right)=\sum_{t=1}^{\top} e_{t}^{2}=\sum_{t=1}^{\top}\left(y_{t}-\mu-\alpha_{1} e_{t-1}\right)^{2}
$$

## Choosing the lag length, $q$, for MA(q):

## The Autocorrelation Function (ACF)

The ACF is the sequence of correlations between $\left(y_{t}\right.$ and $\left.y_{t-1}\right)$, $\left(y_{t}\right.$ and $\left.y_{t-2}\right),\left(y_{t}\right.$ and $\left.y_{t-3}\right)$, and so on, without holding the effects of earlier lags on $y_{t}$ constant.

The PAF controlled for the effects of previous lags but the ACF does not control for such effects.

## Autocorrelation Function

Data simulated from this model:

$$
y_{t}=e_{t}-0.9 e_{t-1}
$$



## Autoregressive Moving Average ARMA(p,q)

An ARMA(1,2) has one autoregressive lag and two moving average lags:

$$
y_{t}=\delta+\theta_{1} y_{t-1}+e_{t}+\alpha_{1} e_{t-1}+\alpha_{2} e_{t-2}
$$

## Goodness of fit criteria

- Akaike's Information Criterion [AIC]
- Schwartz's Bayesian Criterion [BIC]
- -2LogLikelihood

The smaller the better....

## Stationary vs. Nonstationary

## Stationary:

A stationary time series is one whose mean, variance, and autocorrelation function do not change over time.

## Nonstationary:

A nonstationary time series is one whose mean, variance or autocorrelation function change over time.

First Differencing is often used to transform a nonstationary series into a stationary series:

$$
y_{t}=z_{t}-z_{t-1}
$$

where $Z_{t}$ is the original nonstationary series and $y_{t}$ is the new stationary series.

Auto Regressive Integrated Moving Average, ARIMA(p, $\mathrm{d}, \mathrm{q})$

An $\operatorname{ARIMA}(p, d, q)$ model represents an $\operatorname{AR}(p)-M A(q)$ process that has been differenced (integrated, I(d)) d times

$$
y_{t}=\delta+\theta_{1} y_{t-1}+\ldots+\theta_{p} y_{t-p}+e_{t}+\alpha_{1} e_{t-1}+\ldots+\alpha_{q} e_{t-q}
$$

## The Box-Jenkins approach:

1. Identification determining the values of $p, d$, and $q$
2. Estimation
linear or nonlinear least squares
3. Diagnostic Checking
model fits well with no autocorrelation?
4. Forecasting
short-term forecasts of future $y_{t}$ values

## A Case Study: Series F

The series consists of 70 observations on the yield of a batch chemical process.

## A Case Study: Series F

First we plot the series to check for trend, periodicity, etc. which will need the application of differencing.
We inspect the ACF and PAFto help in identifying an ARMA model for the stationary series we obtain.

```
The Autocorrelation Function (ACF)
```

The Partial Autocorrelation Function (PAF)

## Time Plot of Series F

Time Series Plot for $F$


No obvious non-stationarity in the form of trend or periodic effects.
No apparent need to difference the series.

## Model Identification.

- The theoretical acf of a MA(q) series shows a cutoff after lag q.
- The ACF of an $\operatorname{AR}(p)$ series theoretically shows a geometric decline after lag $p$.
- The pacf of an $\operatorname{AR}(p)$ series theoretically shows a cutoff at lag $p$.


## More Identification.

- Often several models look plausible .
- We can try to identify the order of an AR process by fitting several models of orders in the region of $p$ which we think is plausible. Plotting the residual sum of squares against p may show a "flattening" for values beyond the "true" order.


## Sample ACF of Series F

Correlogram of Series F


| Lag | Corr | $T$ | LBQ | Lag | Corr | $T$ | LBQ | Lag | Corr | $T$ | LBQ |
| ---: | :---: | ---: | ---: | ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| 1 | -0.39 | -3.26 | 11.10 |  | 8 | -0.04 | -0.29 | 21.57 | 15 | -0.01 | -0.04 |
| 2 | 0.30 | 2.23 | 17.97 | 9 | -0.00 | -0.03 | 21.57 | 16 | 0.17 | 1.12 | 27.89 |

$\begin{array}{lllllllllllll}1 & -0.39 & -3.26 & 11.10 & 8 & -0.04 & -0.29 & 21.57 & 15 & -0.01 & -0.04 & 25.09 \\ 2 & 0.30 & 2.23 & 17.97 & 9 & -0.00 & -0.03 & 21.57 & 16 & 0.17 & 1.12 & 27.89\end{array}$
$\begin{array}{rrrrrrrrrrrr}2 & 0.30 & 2.23 & 17.97 & 9 & -0.00 & -0.03 & 21.57 & 16 & 0.17 & 1.12 & 27.89 \\ 3 & -0.17 & -1.14 & 20.03 & 10 & 0.01 & 0.10 & 21.59 & 17 & -0.11 & -0.71 & 29.06\end{array}$
$\begin{array}{lrrrrrrr}3 & -0.17 & -1.14 & 20.03 & 10 & 0.01 & 0.10 & 21.59 \\ 4 & 0.07 & 0.48 & 20.41 & 11 & 0.11 & 0.73 & 22.62\end{array}$
$\begin{array}{ccccccccc}4 & 0.07 & 0.48 & 20.41 & 11 & 0.11 & 0.73 & 22.62 \\ 5 & -0.10 & -0.65 & 21.14 & 12 & -0.07 & -0.45 & 23.03\end{array}$
$\begin{array}{llllllllll}6 & -0.05 & -0.31 & 21.32 & 13 & 0.15 & 0.97 & 24.97\end{array}$
$\begin{array}{llllllll}7 & 0.04 & 0.24 & 21.42 & 14 & 0.04 & 0.23 & 25.09\end{array}$

Let's look at a correlogram of the series.

The only large values are at lags 1 and 2.

Maybe $\operatorname{AR}(2)$ or $\operatorname{AR}(1)$ ?

## Partial Correlogram



## The partial correlogram also only has appreciable values at lags 1 and 2.

Try an AR(2) model.
i.e. $p=2, d=0, q=0$

## Fitting an AR(2) model

Final Estimates of Parameters

| Type | Coef | StDev | T |
| :--- | :--- | :--- | ---: |
| AR 1 | -0.3461 | 0.1259 | -2.75 |
| AR 2 | 0.1934 | 0.1259 | 1.54 |
| Constant | 59.047 | 1.298 | 45.50 |
| Mean | 51.227 | 1.126 |  |

## Model Checking

- Examine various aspects of the residuals to evaluate the adequacy of our chosen model.
- Use the acf and pacf to look for any remaining times series structure in the residuals which we have not removed.
- Check for normality and constant variance.


## Correlogram of Residuals

ACF of Residuals for $F$
(with $95 \%$ confidence limits for the autocorrelations)


No obvious autocorrelation left after we have fitted our $A R(2)$ model to the original series.

## Partial Correlogram of Residuals

PACF of Residuals for $F$
(with 95\% confidence limits for the partial autocorrelations)


As we expect from the PAF and ACF, there is no indication of residual partial autocorrelation.

## Histogram of Residuals

Histogram of the Residuals
(response is F )


The residuals are symmetric about zero and die away fairly rapidly. A normal distribution with mean zero looks plausible.

## Normal Probability Plot

Normal Probability Plot of the Residuals
(response is F)


The graph should approximate a straight line if the residuals are normally distributed.

A normal distribution looks OK.

## Residuals v. Fitted Values

Residuals Versus the Fitted Values
(response is F)


No obvious problems such as the variance depending on the size of the observation.

## Residuals in Time Order

Residuals Versus the Order of the Data
(response is F


No obvious failures to model dependence of residuals over time .

## Which Model ?

| Time Series Yield |  |  |  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| Mean 51.128571 |  |  |  |  |  |  |  |
| Std | 11.82361 |  |  |  |  |  |  |
| N | 70 |  |  |  |  |  |  |
| Model Comparison |  |  |  |  |  |  |  |
| Model | DF | Variance | AIC | SBC | RSquare | -2LogLH |  |
| MA(2) No Constrain | 67 | 10.895539 | 173.18474 | 179.93023 | 0.179 | 332.05415 |  |
| AR(1) No Constrain | 68 | 120.03093 | 339.14246 | 343.63945 | 0.166 | 333.30647 |  |
| AR(2) No Constrain | 67 | 117.76326 | 339.80735 | 346.55283 | 0.193 | 331.00592 |  |
| ARMA(1,1) No Constrain | 67 | 118.6094 | 340.3085 | 347.05399 | 0.188 | 331.48621 |  |

## Forecasting 6 periods ahead

Time Series Plot for F
(with forecasts and their $95 \%$ confidence limits)
Opposite is a time series plot with
forecasts up to 6 periods ahead added.
You can see that the interval estimates in
blue are quite wide.


## Transfer Functions

$y_{t}$ : Quarterly US Personal Consumption Growth Rate
$x_{t}$ : Quarterly US Personal Income Growth Rate


Residual by Predicted Plot


Durbin-Watson
Durbin- Number
Watson of Obs. AutoCorrelation Prob<DW
$1.692595-184 \quad 0.1531-0.0182$

- "Can I just run a standard least squares regression model to predict $y(t)$ ?" ( $\widehat{\boldsymbol{y}_{\boldsymbol{t}}}=\mathbf{0 . 5 5 + \mathbf { 0 . 2 8 } * \boldsymbol { x } _ { \boldsymbol { t } } )}$
--Key assumption that the regression errors are independent is likely violated => Misleading inferences.


## Transfer Functions

--A pure ARIMA model uses the past values of an variable to predict its future values. If there is a good predictor bring it in.


Blue line: Actual Sales<br>Green Line: Forecast from Pure ARIMA<br>Red Line: Forecast from Transfer Function Model

## Transfer Functions

$$
\begin{aligned}
& y_{\boldsymbol{t}}=\boldsymbol{\mu}+\boldsymbol{x}_{\boldsymbol{t}} \boldsymbol{\beta}+\boldsymbol{e}_{\boldsymbol{t}} \\
& \boldsymbol{y}_{\boldsymbol{t}}=\boldsymbol{\mu}+\frac{\boldsymbol{\theta}(\boldsymbol{B})}{\boldsymbol{\varphi}(\boldsymbol{B})} \boldsymbol{e}_{\boldsymbol{t}}
\end{aligned}
$$

Transfer Function ARIMA Error Term

$$
y_{t}=\mu+\frac{\omega(B)}{\delta(B)} x_{t-l}+\frac{\theta(B)}{\varphi(B)} e_{t}
$$

## Prewhitening

Identifying when the input effect takes place, how long it lasts and in what shape it decays.


## Ex2: Forecasting Sales using Lagged Predictors

Input series $x_{t}$ is delayed by 3 lags and then exponentially decreasing:

$$
\begin{aligned}
& \omega_{0}\left(x_{t-3}+\delta x_{t-4}+\delta^{2} x_{t-5}+\right. \\
& \left.\delta^{3} x_{t-6}+\delta^{4} x_{t-7}+\cdots\right)
\end{aligned}
$$

try the transfer function $\frac{\omega_{0}}{1-\delta B} x_{t-3}$ to approximate the input-output relationships

## Forecasting: Principles and Practice

## Rob J Hyndman and George Athanasopoulos



# Functional data analysis and nonlinear regression models: an information quality perspective 

Ron S. Kenett ${ }^{\text {a }}$ (D) and Chris Gotwalt ${ }^{\text {b }}$<br>${ }^{\text {a }}$ The KPA Group and the Samuel Neaman Institute, Technion, Israel; ${ }^{\text {b JMP Statistical Discovery, LLC, Research Triangle, }}$ North Carolina, USA

## ABSTRACT

Data from measurements over time can be analyzed in different ways. In this article, we compare functional data analysis and nonlinear regression models using, among others, eight information quality dimensions. We present two case studies. The first case study introduces functional data analysis and nonlinear regression models in analyzing dissolution profiles of drug tablets where profiles of tablets under test are compared to reference tablets. A second case study involves statistically designed mixture experiments used in optimization tablet formulation. Python and JMP features are used to demonstrate the methods used in the two case studies.

## KEYWORDS

dissolution curve; functional data analysis; information quality; mixture experiments; nonlinear regression

## Chapter 8 <br> Modern Analytic Methods: Part II

Preview Chapter 8 includes the tip of the iceberg examples with what we thought were interesting insights, not always available in standard texts. The chapter covers functional data analysis, text analytics, reinforcement learning, Bayesian networks, and causality models.

## Chapter 8 <br> Modern Analytic Methods: Part II

### 8.1 Functional Data Analysis

When you collect data from tests or measurements over time or other dimensions, we might want to focus on the functional structure of the data. Examples can be chromatograms from high-performance liquid chromatography (HPLC) systems, dissolution profiles of drug tablets over time, distribution of particle sizes, or measurement of sensors. Functional data is different using individual measurements recorded at different sets of time points. It views functional observations as continuously defined so that an observation is the entire function. With functional data consisting of a set of curves representing repeated measurements, we characterize the main features of the data, for example, with a functional version of principal component analysis (FPCA). The regular version of principal component analysis (PCA) is presented in detail in Chap. 4 (Industrial Statistics book) on Multivariate Statistical Process Control. With this background, let us see an example of functional data analysis (FDA).

## Modern

## Chapter 8

Modern Statistics: A Computer Based Approach with Python
by Ron Kenett, Shelemyahu Zacks, Peter Gedeck
Publisher: Springer International Publishing; 1st edition (September 15, 2022)
ISBN-13: 978-3031075650
(c) 2022 Ron Kenett, Shelemyahu Zacks, Peter Gedeck

The code needs to be executed in sequence

In [1]: import os
os.environ['OUTDATED_IGNORE'] = '1'
import warnings
from outdated import OutdatedPackageWarning
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=OutdatedPackageWarning)

## Modern analytic methods: Part II

```
import networkx as nx
import statsmodels.api as sm
from statsmodels.tsa.stattools import grangercausalitytests
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import mistat
```


## A Case Study

- A manufacturer of electro-mechanical devices
- $22 \%$ of units fail early

- The company screens units via burn-in under accelerated conditions
- 23 measurements are collected in real time (2 key parameters)
- Can we use these measurements to predict which units will fail in less time than the current protocol?


## Key parameter 1

Data consists of 92 units. If a unit didn't fail, there would be around 25,000 measurements. Failed series can be much shorter








## Functional Data Analysis models

- B-Splines
- Piecewise polynomials with an underlying mean model and variance components on the spline coefficients.
- These often work the best.
- Try these first and customize the \#Knots as needed.
- P-Splines
- $P$ is for "Penalized". These tend to have lots of knots and are often slower to fit but similar in properties to B Splines.
- Worth trying if B Spline do not fit well.
- Fourier Basis
- Uses a sine/cosine expansion as the basis.
- Good for periodic data (like vibration/sound signals).
- Usually the spline models work better on other types of functional data.


## P-Spline Functional Model Fit

$$
y_{i}\left(t_{i, j}\right)=\sum_{k} \beta_{k} b\left(t_{i, j}\right)+\sum_{k} \gamma_{i, k} b\left(t_{i, j}\right)+\varepsilon_{i, j, k}
$$

- $b\left(t_{i, j}\right)$ : basis functions, these form $X$, and $Z$.
- $\beta_{k}$ : mean function coefficients, fixed effects
- $\gamma_{i, k} \sim N\left(0, \sigma_{k}^{2}\right)$ : random effects
- $\varepsilon_{i, j, k} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$ : errors


## Scoring New P-Spline Functions <br> Training <br> $\hat{\gamma}_{V a l}=\left(Z_{V a l}^{T} Z_{V a l}+G\left(\hat{\sigma}_{T r}^{2}\right)\right)^{-1} Z_{\text {Val }}^{T}\left(y_{V a l}-X_{V a l} \hat{\beta}_{T r}^{\downarrow}\right)$

- $\hat{\beta}_{T r}, \hat{\sigma}_{T r}^{2}$ estimated from training data
- Use BLUP formula to score $\hat{\gamma}_{\text {Val }}$ or any new units

A best linear unbiased prediction (BLUP) estimate of realized values of a random variable are linear in the sense that they are linear functions of the data. They are unbiased in the sense that the average value of the estimate is equal to the average value of the quantity being estimated and best in the sense that they have minimum sum of squared error within the class of linear unbiased estimators. Estimators of random effects are called predictors, to distinguish them from estimators of fixed effects called estimators. BLUP estimates are solutions to mixed model equations and are usually different from generalized linear regression estimates used for fixed effects.

|  | UnitID | Validation | Failed | Key Parameter 1 FPC 1 | Key Parameter 1 FPC 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | Training | 0 | -0.137461119 | 0.1518411781 |
| 2 | 2 | Training | 1 | 1.2865813341 | 0.2245665174 |
| 3 | 3 | Training | 0 | 1.7696429741 | -0.097194514 |
| 4 | 4 | Validation | 1 | 2.2470498512 | 0.3152274003 |
| 5 | 5 | Training | 0 | 1.0745237905 | 0.0063042898 |
| 6 | 6 | Training | 0 | -2.743836032 | -0.00195229 |
| 7 | 7 | Training | 0 | 0.4589908625 | 0.1970255259 |
| 8 | 8 | Training | 0 | -0.81562604 | 0.0974489975 |
| 9 | 9 | Training | 0 | -0.547114624 | -0.129940706 |
| 10 | 10 | Training | 0 | -0.633798753 | 0.0691610259 |
| 11 | 11 | Validation | 0 | 1.2816670105 | 0.059283723 |
| 12 | 12 | Training | 1 | -3.588716661 | 0.0642051917 |

- Data summarized into one row per unit
- Model failure probability


A two-layer Neural Network predicting failure probability

## Model Validation



A Regression Tree was used to predict "Censor" at 20 hours using the Neural probability as input, using only the Training subset of the data.

## Model Validation



Yes/No/Maybe decision rule was developed from the neural network prediction

|  | 2 | 5 | T2R | 78.8 | T2 | 10.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dissolution | 3 | 5 | T3R | 32.3 | T3 | 10 |
|  | 4 | 5 | T4R | 38.8 | T4 | 42.9 |
| Curves of | 5 | 5 | T5R | 18.9 | T5 | 61 |
|  | 6 | 5 | T6R | 52.1 | T6 | 36.3 |
| 12 tablets. | 7 | 5 | T7R | 14.3 | T7 | 6.4 |
|  | 8 | 5 | T8R | 67.8 | T8 | 4.4 |
| Reference | 9 | 5 | T9R | 7.5 | T9 | 5.4 |
|  | 10 | 5 | T10R | 8.5 | T10 | 3.6 |
|  | 11 | 5 | T11R | 26.5 | T11 | 6.4 |
|  | 12 | 5 | T12R | 10.2 | T12 | 35 |
|  | 13 | 10 | T1R | 89.1 | T1 | 74 |
|  | 14 | 10 | T2R | 94.4 | T2 | 38.1 |
|  | 15 | 10 | T3R | 60.5 | T3 | 30.9 |
|  | 16 | 10 | T4R | 63.7 | T4 | 88.1 |
|  | 17 | 10 | T5R | 31.3 | T5 | 84.3 |
|  | 18 | 10 | T6R | 79.6 | T6 | 71.9 |
|  | 19 | 10 | T7R | 44.3 | T7 | 39.4 |


| Test |  | Reference |  |
| :--- | ---: | :--- | ---: |
| Level | Count | Level | Count |
| 5 | 12 | 5 | 12 |
| 10 | 12 | 10 | 12 |
| 15 | 12 | 15 | 12 |
| 20 | 12 | 20 | 12 |
| 30 | 12 | 30 | 12 |
| 45 | 12 | 45 | 12 |
| Total | 72 | Total | 72 |

FDA

Data vs. Time


Data vs. Time

Dissolution
Curves of
12 tablets.

Test T5R
Is different


FDA


## Quadratic B-

 spline with 1 knot

## Gompertz 3P

## Plot



## Prediction Model

$$
a \cdot \operatorname{Exp}(-\operatorname{Exp}(-b \cdot(\text { Time }-\mathrm{c})))
$$

a = Asymptote
$b=$ Growth Rate
$c=$ Inflection Point

Prediction Profiler


[^0]$c=$ Inflection Point

|  | Label | Asymptote | Growth Rate | Inflection Point |
| :---: | :---: | :---: | :---: | :---: |
| (T1R 1 | T1R | 89.072244404 | 0.2185624809 | -3.625806907 |
| 2 | T2R | 93.480399791 | 1.76758908 | 4.0002987548 |
| 3 | T3R | 95.117117858 | 0.1732544061 | 5.4556204689 |
| 4 | T4R | 95.393703545 | 0.1508168903 | 4.2794474042 |
| T5R 5 | T5R | 97.047132531 | 0.0750862269 | 11.579937352 |
| 6 | T6R | 95.886344295 | 0.2282099484 | 2.8239229453 |
| 7 | T7R | 95.608682945 | 0.1500953986 | 8.8540204547 |
| 8 | T8R | 113.26922091 | 0.0355126872 | -23.11022674 |
| 9 | T9R | 102.16502758 | 0.1201635618 | 14.766362121 |
| 10 | T10R | 97.965019617 | 0.1562304451 | 10.087517474 |
| 11 | T11R | 94.032980681 | 0.3037771891 | 5.8648755174 |
| 12 | T12R | 97.966870258 | 0.1439240958 | 10.549169714 |

## Prediction Model

$a \cdot \operatorname{Exp}(-\operatorname{Exp}(-b \cdot($ Time -c$)))$
$a=$ Asymptote
$\mathrm{b}=$ Growth Rate
$c=$ Inflection Point
multivariate statistical distance (MSD)

Multivariate Control Chart
T Square with All Principal Components


Note: UCL is calculated based on Alpha $=0.05$

| Eigenvalue P | Percent | 204060 |  | Cum Percent | ChiSquare | DF | Prob>ChiSq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 109.6992 | 82.409 |  |  | 82.409 | 56.861 | 5.000 | <.0001* |
| 23.2208 | 17.444 |  |  | 99.853 | 37.506 | 2.000 | <.0001* |
| 0.1951 | 0.147 |  |  | 100.000 | 0.000 | 0.000 |  |
| Eigenvectors |  |  |  |  |  |  |  |
| Asymptote | -0.03538 | - 0.19264 |  | 7053 |  |  |  |
| Growth Rate | 0.00038 | -0.00663 |  | 6272 |  |  |  |
| Inflection Point | t 0.08868 | -0.07689 |  | 1853 |  |  |  |

[^1]
## Gompertz 3P

Plot

Legend
-T1R
-T2R
-T3R
-T4R
-T5R
-T6R
$-T 7 R$

- T8R
- T9R
-T10R
-T11R -T12R
Guidance for Industry
Dissolution Testing of Immediate Release Solid Oral Dosage Forms

Model Dependent Approaches

Thank you for your attention


[^0]:    a Asymptote
    $\mathrm{b}=$ Growth Rate

[^1]:    Note: Eigenvectors were divided by square root of eigenvalues

